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FIR Filter Fits in an FPGA using a Bit Serial Approach
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INTRODUCTION

Early digital processors almost exclusively used bit
serial architectures because of the high cost of
hardware.  Bit serial machines have been
supplanted by parallel architectures mostly due to
the low cost of hardware today.  As a result, bit se-
rial solutions are often overlooked in applications
where they may be the better choice.  This is es-
pecially true when designing with Field Pro-
grammable Gate Arrays.  Many of the elements
(Eg. multipliers) used in parallel structures will not
even fit in an FPGA.  In those cases where an ele-
ment fits, the routing resources often are
insufficient or the resulting design is to slow to be
an attractive replacement for dedicated function
parts.

By returning to a bit-serial architecture, it is fre-
quently possible to pack  a relatively complex func-
tion into a single FPGA.  A throughput improve-
ment may even be realized over an equivalent
parallel structure implemented in FPGAs.  To
illustrate the advantages of bit serial designs for
FPGAs , I examine the implementation of an entire
FIR filter in a single FPGA using only bit serial
elements.

What is Bit Serial?
Bit parallel designs process all of the bits of an in-
put simultaneously at a significant hardware cost.
In contrast, a bit serial structure processes the input
one bit at a time, generally using the results of the
operations on the first bits to influence the process-
ing of subsequent bits.  The advantage enjoyed by
the bit serial design is that all of the bits pass
through the same logic, resulting in a huge reduc-
tion in the required hardware.  Typically, the bit
serial approach requires 1/nth of the hardware
required for the equivalent n-bit parallel design.
The price of this logic reduction is that the serial
hardware takes n clock cycles to execute, while the
equivalent parallel structure executes in one.  The
time-hardware product, however, for the serial
structure is often smaller than for equivalent
parallel designs because the logic delays between
registers are generally significantly smaller.  This
means that the serial machine can operate at a

higher clock frequency.  In the case of FPGAs,
signal routing contributes significant propagation
delays and often uses up logic cells.  The serial
structures tend to have very localized routing, often
to only one destination.  In contrast, the parallel
machines usually need signals extended across the
width of the processing element.  The limited and
slow routing resources in FPGAs make the serial
processing elements even more attractive.  In some
cases, the overall throughput for a serial design
implemented in an FPGA can actually exceed that
of an equivalent parallel design in the same device.

FPGA selection and background
The techniques described in this paper apply to any
FPGA, as well as to VLSI designs (which may
benefit from the same advantages-especially where
high data rates are not necessary).  For the purpose
of this project, the CLI 6000 series FPGAs made by
Concurrent Logic Inc (CLI) were selected.  These
FPGAs are RAM based, and contain a 56 x 56
array of logic cells interconnected via busses and
direct wires to nearest neighbors.  Each cell
basically consists of a half adder with a D flip flop
on the sum output and some extra logic to allow
other functions to be programmed.  The cell is
programmed to one of 64 configurations by a
dedicated ram under the cell.  The cells each have
2 (3 for certain special functions) inputs and 2
outputs, all of which are accessible from any side
of the cell.  Each input and output can be directly
wired to/from any of the cell’s four nearest
neighbors, or to any of 4 local busses which extend
to other cells in the row or column.  The local
busses are broken into segments eight cells long
and are connected across the breaks by
programmable repeaters.  The relatively simple cell
in the CLI array is fairly well suited to the bit serial
structures.

THE BASIC BUILDING BLOCKS

The most basic functions required for nearly any
signal processor include addition, negation and de-
lays.  These blocks can then be used to construct
the more complicated structures such as
multipliers.  In most cases, using a bit-serial ar-
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chitecture simplifies the hardware required since
all of the bits pass through a single bit wide el-
ement.  I will discuss the construction of these
basic elements in the next paragraphs.

Bit Serial Adder
A bit-serial adder is constructed using a full adder
with registers on both its carry and sum outputs.
The registered carry output is wired back to the
carry input of that full adder.  In operation, the two
words to be added together are simultaneously
shifted least significant bit first into the remaining
two inputs.  The carry out from the addition of
each bit is stored and then used in the summation
of the next bit.  In effect, the carries are held sta-
tionary while the inputs are rippled past.  This
adder is also known as a Carry Save Adder because
of the nature of its  operation.  The output of the
circuit is registered to allow bit pipelining.  The
resulting latency is one bit time.  The serial adder
must be cleared before each word to avoid errors.
The input words and output word are always equal
length.  As with parallel addition, the radix points
of the input words must be aligned.
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a) Carry-Save Adder Schematic
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b) Example Carry-Save Adder implementation.

Figure 1. Carry-Save Adder schematic and layout.  Cells
are:  PFDHA= half adder with a register on sum output,
PXOND = non-registered half adder ,  PINV = inverter

(necessary to correct inverted half adder output).

D Q

D Q

^A S

+

a) Two's Complement Schematic

^ 

& 

B 

B 

PFDHA 

+ 

PFDOR 

A B 

S 

A A 

Z Z 

b) Two's Complement Layout and Implementation
(input A wired to two cells and must be a buss input)

Figure 2.  Two's Complement schematic and layout.
FPGA cells are: PFDHA= half adder with a register on

sum output, PFDOR =  OR with register on output.

Bit Serial Two’s Complement
The second elementary function required is a part
which will compute the two's complement of the
input argument.  Recalling the serial algorithm for
two's complement (starting at least significant bit
copy each bit until first one is encountered then in-
vert remaining bits) yields a simple solution.  A se-
rial two's complement circuit is shown in figure 2.
The input should be presented least significant bit
first.  The carry (detect)flip-flop must be reset be-
fore each input word, since it causes the XOR to
invert the input continuously after the first logic
one is detected.  The output is registered, so the
function has a one bit latency.

Delays
The remaining elementary function is the bit delay
(a bit time is one clock cycle).  The delay is useful
for aligning words as well as for producing word
delays required by some algorithms.  The delay is
simply a D flip-flop inserted into the data path for
each bit of delay desired. Word delays are con-
structed from a string of bit delays equal in length
to the number of bits in the word.  A sample layout
of a word delay for a filter is shown in figure 3.
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HIGHER FUNCTIONS

The repertoire of functions required to implement a
FIR filter is rounded out with a multiplier and a
column adder, both of which are constructed from
the elements already discussed.  Other DSP  func-
tions may require additional functions.

Multiplier
Multipliers are essential to most signal processing
algorithms.  The simple serial by parallel multi-
plier is particularly well suited for FPGA imple-
mentation because all of its routing is to nearest
neighbors with the exception of the input.  The
number of cells is proportional to the number of
bits in the parallel input.  One input of this multi-
plier is parallel while the other is bit serial with the
least significant bit presented first.  The output is
bit serial, also with the least significant bit first.
The architecture of a general serial by parallel mul-
tiplier is shown in figure 4a.  This multiplier per-
forms the familiar shift-add algorithm:  the parallel
input is multiplied in turn by each bit of the serial
input as it is presented, and each of those partial
products is added to the shifted accumulation of the
previous products.  The bitwise products are simply
the logical ANDs of the input bit with each of the
parallel input bits.  The shifting accumulator is
easily constructed by chaining a series of carry-
save adders together so that inputs to the
accumulator are bit parallel and the sum is
downshifted on each operation.  The serial output
is then taken from the output of the least
significant bit adder.  The output bit has the same
weight as the previous serial input bit, yielding a
latency of one bit.  The number of bits in the output
is equal to the sum of the number of bits in each of
the inputs.  Since the serial input has to be of the
same length as the output, it is extended with sign
bits.

Multiplication of negative (two’s complement)
numbers using an unmodified shift-add algorithm
will yield an error in the upper half of the product.
This error is the result of the inputs not being sign
extended to account for the growth of the product
(number of bits in the product is equal to the sum
of the bits in the multiplicands).  The serial input
of the parallel by serial multiplier does not suffer
from this error since it must be extended to account
for the growth in the product.  The parallel (X) in-
put will suffer if not corrected.   Fortunately, the
correction can be made without adding bits to the
multiplier hardware by recognizing that the sign
extension of X, if taken alone, multiplies the serial
input by either zero or negative one.  This result is
shifted into the lower bits of the multiplier during
the course of the multiplication.   The sign
extension of the parallel input can be accomplished
by replacing the most significant adder of the
multiplier by a two's complement stage.  The input
of this stage is the bit product (AND) of the serial
input and the sign bit of the parallel input.

  The analysis of the correction for negative inputs
reveals that the X and Y inputs do not have to have
the same number of bits.  The X input is essentially
sign extended infinitely by the two’s complement
block, and the Y input is dependent only upon the
length of the serial input.  The hardware for the
multiplier is independent of the precision of the
serial input.  It is therefore possible to save some
hardware in cases where the parallel input does not
need the precision of the serial input.  This fact -
could be advantageous in the FIR filter, since lim-
ited precision in the coefficients limits the place-
ment of the filter’s zeros but does not otherwise
contribute to noise in the output.

The serial multiplier must be cleared before a new
word is input to prevent errors.  This is especially
true if the X (parallel) input is negative since the
two’s complement circuit cannot self clear.  No
other controls are required.   Secondly, the serial
input has to be sign extended by the number of bits
in the parallel input (ie to make the number of bits
in the serial input equal to the number of bits in the
output).   The output is always a full precision
output.
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Figure 4 Serial by Parallel Multiplier Architectures and Layouts

The partial products presented to the shifting accu-
mulator are generated by the logical AND of the
input serial bit with each bit of the parallel input.
If the parallel input is fixed, the AND gates can be
eliminated by connecting the inputs to each adder
directly to the Y (serial) input or to logic zero
depending upon the value of the corresponding bit
in the fixed parallel input.  The FPGA is RAM
based, so the value of the parallel input can still be
changed by reprogramming if this is done.  Since
the coefficients of an FIR filter are normally
changed infrequently with respect to the data rate, I
chose to take advantage of this simplification.
This eliminates the AND gates used to generate the
product, and more significantly, the logic required
for setting and holding the parallel input values.
As a note, a further simplification of the fixed
input multiplier is possible by noting that the
adders associated with zeros in the parallel input
reduce to a single delay flip-flop.  I chose not to
implement that reduction to minimize the changes
required in reprogramming coefficients to the FIR
filter.  The simplified multiplier is shown in figure
4b.

The n bit multiplier is constructed in the FPGA by
stringing n-1 of the carry-save adders (CSADD)

and a two's complement together.  One input of
each CSADD is supplied by the previous stage
output.  The other inputs are supplied by one of
two local busses (the Y input to the multiplier for
ones,  or logic zero for zeros): the parallel input to
the multiplier is programmed by the local bus
connections only.  The layout used is shown in
figure 4c.  Alternatively, a multiplier with a 3 cell
pitch may be created using a different layout for
the CSADD adders to allow more parallel input
bits to fit in the width of the FPGA.

Column Adder
An adder structure capable of simultaneously
adding more than two inputs is a desirable func-
tion.  This is easily accomplished by a tree of serial
adders.  Each serial adder (carry save adder)
combines two input streams into one output, hence
each level of the tree structure reduces the number
of serial streams by half, adding one bit time of
latency in the process.  A column adder
constructed in this manner allows an arbitrarily
large number of inputs to be summed together
without a sacrifice in the bit rate.  If an odd
number of inputs exist in a level, the odd input can
be passed on to the next level via a register to keep
the alignment of the bits.  If overflow is to be
avoided, one bit of growth must be allowed for
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each level in the adder.  Since the input and output
must have a similar number of bits, the input must
include extra sign  (guard) bits to prevent overflow.
The number of levels and hence the latency and
number of guard bits for an n input column adder
is equal to Log2(n) rounded up to an integer.  As
with single serial adders, the inputs and output are
presented least significant bit first.  The column
adder architecture is illustrated in figure 5.  An
FPGA implementation designed to match to a stack
of 2 cell tall multipliers is shown in figure 6.  Note
that the CSADD layouts were optimized for the
application.
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Figure 5.  Example Serial Column Adder Architecture

PUTTING IT ALL TOGETHER:
 AN FIR FILTER

The FIR filter is essentially a discrete convolution
of the input signal with a set of coefficients.  Math-
ematically, the filter can be defined as:

Y[k]  = S
n
Ci X[k-i]

The signal flow diagram shown in figure 7 illus-
trates the algorithm and suggests an architecture
using the elements created above.  The word delays
are inserted for the ‘Z’ delay blocks. The
multiplications shown in the flow graph corre-
spond to the serial by parallel multipliers with their
parallel inputs programmed with the value of the
associated coefficient.  A separate word delay and
multiplier are used for each tap in the filter.  All of
the summation blocks shown are combined and re-
placed by a column adder with as many inputs as
there are taps.  Figure 8 shows an example layout

and interconnect for a seven tap filter using the
functions developed earlier.
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Figure 6. Portion of Serial Column Adder layout de-
signed to match the outputs of a stack of  2 cell high
multipliers .  Each shaded cell group is a carry save
adder.  This pattern is repeated  to create the first two
levels of the column adder.  The remaining levels are
inserted in the 2 x 3 voids left in the resulting layout .

As each word is shifted into the filter (least signifi-
cant bit first of course) it is fed to the first multi-
plier where it is multiplied by C0.  At the same
time, The input is fed to the delay chain where it is
delayed exactly one word time interval so it arrives
at the second multiplier on the same clock that the
second word is presented to the first multiplier.
The succeeding words eventually fill the delay so
that the each of the last n (n=number of taps)
words received are simultaneously multiplied by
the appropriate coefficients.  The outputs of the
multipliers are fed to the column adder to perform
the summation.  The latency for the entire filter is
Log2(# taps) +1 rounded up to the next integer.
This reflects the latency of one for the multiplier
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added to the column adder latency.  The delays do
not contribute to the latency figure, as they are
used to provide the past inputs to multipliers.
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Figure 7.  FIR filter signal flow diagram.
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Input, Output and Control
Both the input and output of the filter are serial
data streams with each word presented least
significant bit first.  The input words are of the
same length as the output.  The word length is
equal to the sum of the word sizes of the input
(number of bits excluding sign extension required
for processor), the coefficients (length of
multipliers) and the number of levels in the column
adder.  The word size of the input need not be the
same as that of the coefficients.  The input is sign
extended to bring it to the same length as the
output.  This requirement is due to the nature of
the serial processing; the inputs need to be as long
as the outputs.  The extra few bits due to the
column adder allow the column sum to grow with-
out overflow.  The multiplier array must be reset
before each new word begins to shift in.  The de-
lays, however, cannot be reset since they hold the
old words.  In the FPGA implementation, a local
reset was wired to the array columns corresponding
to to the multipliers and column adder instead of
the global reset.  That local reset was brought out
as a control line in addition to the global reset
which clears the filter.

More taps may be obtained by cascading two
filters.  This is done by adding an extra word delay
to the end of the delay chain to feed the serial input
of the second filter.  The serial outputs of the two
filters are summed using a serial adder to obtain
the final output.  This expansion scheme can be
extended to create any number of taps by chaining
chips together via the delay chain and summing
their outputs with a column adder.  That column
adder could easily be included one of the devices.

The filter coefficients are determined when the de-
vice is programmed.  The value of each bit of the
coefficient is determined by connections to a single
cell (except for the coefficient sign bits which have
two connections), so to change a bit, only one cell
needs to be updated in the device program
(assuming the device was routed in a predictable
manner).  The bit values of the filter coefficients
are defined by the connections of each stage of the
multiplier to the corresponding Y bus (for a 1) or
logic zero bus (for a 0).  The coefficient bits are
ordered on the multipliers so that the most
significant bit corresponds to the input end of the
multiplier.  The coefficients are ordered in the FIR
filter so that C0 is at the input end of the filter.
The CLI FPGA has a feature which  allows partial
reprogramming of the array while the remaining
portion remains functional.  This feature should al-
low changing coefficients on the fly.  Even if this
feature is not usable, FIR coefficients are usually
changed as a result of a change of context, where
the outputs are meaningless during the change
anyway.  According to the CLI data sheets,
complete device reprogramming typically takes
place in 8ms.

DESIGN ASSESSMENT

The real-estate occupied by the filter is determined
mainly by the layout of the carry-save adders, the
number of bits in the coefficients and the number
of taps in the filter.  If the multipliers are
constructed of adders 3 cells wide and 2 cells tall
(adders are chained horizontally), one device can
contain a 27 tap filter with 12 bit coefficients and
17 bit inputs.  Alternatively, if the multipliers are
made of 3 cell tall by 2 cell wide adders,  one
device will support up to 18 taps with 18 bit coef-
ficients and 25 bit inputs.  These are respectable
results for a single FPGA.  Additional taps are
easily had by expanding the filter to multiple
devices as discussed above.
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Using the maximum timing parameters from the
CLI device specification, I found the maximum in-
ternal clock to clock delay in the FIR filter to be
about 30 ns (attributed to the bus transit time on
the Y inputs to the multipliers).   This translates to
a bit rate of about 33 Mhz.  For the example 27 tap
filter with 12 bit coefficients and 16 bit input data
(33 bit output),   this means a data rate ap-
proaching 1 million words per second.

Placement and Routing
The regular structure and compactness of the ele-
ments yields a remarkably high utilization of
around 70%.  This figure is arrived at by counting
the number of cells used as logic (not wire cells)
and dividing by the total number of cells in the
rectangular area covered by the filter.  As a
comparison, a 25% utilization is considered good.
The placement and routing of the cells is critical to
obtaining the predicted data rate and logic density.
Unfortunately, the automatic placement tool is
incapable of producing satisfactory results, so hand
placement is necessary.  The automatic router does
a decent job provided it has a good placement to
start from.  The routed solution, however, is not
optimum.  Additionally, the auto route does not
connect the multiplier Y and Z busses in a pre-
dictable manner, so partial reprogramming would
not be possible.  These limitations could be over-
come by writing a generator program which takes
advantage of the regular structure of the filter to
create a placed and routed data base.  The
generator would have the added benefit of drasti-
cally reducing design time and probability of
errors.

CONCLUSIONS

In this paper, I have shown that it is possible to
pack a relatively complex digital signal processing
function into an FPGA by using bit serial struc-
tures.  The cost of bit serial architectures in terms
of more clock cycles can be offset to some degree
by the shorter delay paths between pipeline regis-
ters.  The resulting design is fast enough for many
applications where a bit serial process may not
have been considered.  The bit serial design
philosophy is extendable to other FPGAs, VLSI
designs and other places, and is as applicable today
as it was for the early processors.
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